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Abstract —First. two closely related problems, shown in Fig. 1. published by Chernigovskaya (1961,
In Issledocaniva po Dinumike Sooruzhenii i Raschetu Konstrukisii na Uprugom Osnovanii (Edited
by B. G. Korenev, pp. | 13-141. Gosstroiizdat, Moscow) and Ting (1973, J. Franklin Inst. 296(2).
77-89) are discussed. It is shown that neither of their formulations is correct. The aim of this paper
is to show how to correctly formulate and solve problems of this type. Utilizing the variational
approach for vanable matching points derived by Kerr (1976, Ini. J. Solids Structures 12,1 -11), a
formulation tor the problem analyzed by Ting is presented. that is mechanically reasonable and
mathematically well posed. The analytical solution obtained is evaluated numerically and then
compared with related test results by Dueelli ef af. (1969, J. Struct. Dic. ASCE 95, 1713-1725).
This paper concludes with a discussion of the results obtained.

INTRODUCTION

The analytical aspects of unbonded contact problems for continuously supported structures
have been discussed by Kerr (1976, 1979), when the base response is represented by a
Pasternak foundation model. For problems of this type the contact region is not known «
priori. Conscquently, the matching conditions at the point of separation must include an
additional cquation for the determination of this unknown.

As an example, Kerr (1976) considered a finite beam resting on a two-dimensional
Pasternak foundation and subjected to vertical loads such that hift-ofl of the beam is
possible, as shown in Fig. 1. Developing variational caleulus for variable matching points,
he showed that this problem was incorrectly formulated by Chernigovskaya (1961). Solving
the case when ¢(x) = const and P = 0, she heuristically prescribed the following matching
conditions at the separation point, x = [:

—El'(ly = —q(L-1)*)2
—Ew"(l) = q(L-1) n
kw(ly—Gw’(l) =0

where w(v) is the vertical deflection, w’ = dw/d.x, G is the parameter of the shear layer, &
is the parameter of the spring layer, ¢ is the uniform load, 2/is the length of contact of base
and beam and 2L is the length of the beam. For the case of a plate strip in cylindrical
bending with w = w(x), £/ 1s replaced by D = ERY[12(1 —v?)).

For the two-dimensional Pasternak foundation model the contact pressure is (Kerr,
1964)

plx) = kw(x)—Gu(x). 2)

Thus, the third condition in (1) prescribes that the pressure is zero at the point of separation.
This is not correct. The proper condition, which results from the variational formulation,
is that at x =/ the slope of the shear layer is continuous. Therefore. the contact pressure
at the separation point may have a non-zero value. Kerr (1979) pointed out that because
of the reduced order of the differential equation that governs the Pasternak foundation
response (as compared to the elastic continuum) only one of the two anticipated conditions
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Fig. 1. Beam problem under consideration.

may be satisfied. For the problem under consideration the tangency condition is the one to
be retained. and not the zero-pressure condition listed in (1).

A similar problem was also incorrectly formulated later by Ting (1973). He solved the
problem shown in Fig. | for the case of ¢(v) = 0, by prescribing the following conditions
at v ={:

w({l} =0
w'(l)y =0 . (3)
w”(l)y =0

This formulation incorrectly stipulates that the deflection at the separation point is zero.
Whereas this is true for the Winkler foundation, it does not apply to the Pasternak base
model. As a consequence of the first two conditions in (3), Ting's formulation implics
zero contict pressure at the separiation point x = /. This is not correct for the reason given
in discussing the Chernigovskaya formulation. Another major error in Ting's formulation
is his omission of the differential equation for the basce layer beyond the point of separation.

In the following the correct formulation of Ting's problem is stated and then solved.
The closed-form solution obtained is then numerically evaluated and the results are com-
pared with those of the photoelastic results reported by Durelli ¢f af. (1969).

FORMULATION OF PROBLEM

The problem to be analyzed is shown in Fig. | with ¢(x) = 0. It consists of an elastic
beam resting on a two-dimensional Pasternak foundation that is subjected at the center to
a vertical concentrated load, P. According to the derivation by Kerr (1976), utilizing
symmetry, assuming the validity of beam bending theory, and denoting w, () as the vertical
deflection of the beam axis in 0 < x < [, w,(x) as the vertical deflection of the beam axis in
| < x < L.and w (1) as the vertical deflection of the shear fayerin ! < v < =, for Ef = const
and G = const, the following differential equations result :

EmY —Gwi+kw, =0 0<x<!
EmY =0 l<x<lL _ (4)
Gwi—hkw, =0 l<x<o

The corresponding boundary and matching conditions are:
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wi(0)=0
wi(0) = P[(ZE/)} )
wi () = w,())
w (Y = w ()
wi(l)y = wi(l)
Wil = wihy [ (6)
witl) = wi(l)
will) = w'é'([)J

wi(L) =0
. 7
wil) = 0} )
lim {w} — finite. (8)

Thesce are the [l boundary conditions for the determination of the 10 integration constants
and the. as yet, unknown length, /.

This completes the formulation of the problem under constderation. Tt is very different
to the one presented by Ting (1973). Next, the above formulation is solved.

SOLUTION OF FORMULATION

The differential cquations contain only constant cocflicients, Therefore, the general
solutions are of the form w(x) = A ¢™*. Substituting this into the first differential cquations
gives

G k
oty =0, 9
m Elm + I 0 9

The roots of this equation are

Mizaa =% ZL‘It 261) T EI )

Three cases may be distinguished ; namely G 2 2\//\i‘l
At first, the case G < 2 /kEl is analyzed. The general solutions of the three differential
cquattions in (4) are

wi(x) = [, cos (px)+ A, sin (px)} cosh (kx)+[A; cos (px)+ A, sin (px)] sinh (kx)
walX) = A+ AT A4 A

w(v)= A, "+ 4 e

(10)
where
"}=\/ el u=\/5 (an
p 4E1 ~ 4E1 G
The 10 integration constants A ,. .., Ao and the length { are determined by substituting

the expressions for the ws into the boundary conditions (5)-(8). They are :
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P

A= :“‘EAWLT;;"{);&{—K:(P:-HC:) sin® (pl)+p (p~ +x7)sinh™ (k) +4p°k7)
4o = P 4= - P
TTAEIp(pt+x7) T T AEI(pT +K7)
A= SER T a0 {(p7+r7)cos™ (ph—cosh® (k)] =2(x" —p7)}
fl; = 0: “’[(, = 0
' (12)
P . .
4. = 751(;;: +'\:)‘//:p COS8 {;)I } sinh {K“—K Sin ([“’) cosh (l\“}
P v .
Ay = ?Ef(—{ﬁ:;:—)lﬁ,’ §2np cos {phy cosh (k) — (k™ — p~) sin (pl) sinh (&)
+(p~+ ) [kl sin (pl) cosh (k1) — pl cos (pl) sinh (k)]}
Pt .
Ay = m 12xp cos (pl) cosh (wl) — (x° — p7) sin (pd) sinh (kD) }
A tn = 0.
where
W= wcos {pl) sin (pfY + p cosh (k{) sinh {x]). (1

The condition for the determination of /is

(k= p?)ysin {(pl) sinh (k) —2ip cos (pl) cosh (k[)]
+ (k7 ph)[wosin (ply cosh (k) —p cos (pfy sinh ()] = 0. (1)
The corresponding expressions for the bending moments, beam shearing forees and
the pressure distribution in the contuct region are:
M(x) = — EIw’(x)

[)

= e {!ff {p;c[cos~ {ply+cosh” (k)] sin (px) sinh (kX)) +[x7 sin” (p))
i

+p7 sinh® (1)) cos (px) cosh {(xx)} —k sin (px) cosh (xx) —p cos {px) sinh (x\:\')} (15

V(x) = — EIwy(x)

= 2}%} {l:lb— {p[2x7 cos® (pl) +(x* = p?) sinh? (k))] sin (px) cosh (k)
+&[2p° cosh® (k) + (k7 — p7) sin” (pl)] cos (px) sinh (kx)}

—(k* = p7) sin (px) sinh (xx) = 2xp cos (px) cosh (K.\‘)} (16)

and
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plx) = kw (x)—Gwi(x)

1 . s R i
= P;G {~ ([:, sinh™ {(x/}—z. sin” (pl)-&-ﬁ(g—j}i}—{)} sin (px) sinh (xx)
a kEI'W ke

' . s Ipp”
+ [ﬁ:, sin” (pl)+ l—):: sinh- (k) + —}—eﬁ:} cos (px) cosh (K.Y))
p K K™+p°

- % sin {px) cosh {(kx)— :’\—fcos {px)sinh (xx)} . (17

where
S =Pt za=pt Rt (18)

Next, the case G > 2,/ kElis analyzed. The solutions of the three differential equations
in (4) are

wy(x) = B, sinh (2x) + B, cosh (2x)+ B. sinh {(fix)+ B, cosh (fix)
wa(x) = Bx'+ BT+ B x+ By

“"(.\‘) = B«) e e -+ 1}”) C‘“ (Ig)
where .
at_\/(i+\/<61k‘ _\/k 2
pf TNapr=N\eEn) TEr TG 0
The integration constants B, ..., B, determined are
[)
b= 2kt <)
P s . . )
B, = Elzi (x? -_—al;:-j(-}) [2° cosh (/) cosh (fl) —aft sinh (2f) sinh (f{) - 7]
—-P
= sk TR
P ,
B, = SEF S [B? cosh (xf) cosh (1) —xff sinh (/) sinh (1) —a?]
By=0. B, =0 2h
P . .
8, = _)“Elﬂ‘;(}b [[3 sinh (a{)—z sinh ([f!)]
P . s . .
By = SEIFAYH {° cosh (2/)—=2° cosh (I} +2fi[x sinh (BI)— B sinh (a/)]}
By = 1% 15* cosh (xl) —* cosh (fi
* = SEIfy [B° cosh (af) —u* cosh {fi}]
Bm =0,

where
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¢ = Bcosh (af) sinh { B{) — 2 cosh (fil) sinh (x/) {(22)

and the condition for the determination of / is
2f[x sinh (B1)— B sinh (x)]+ p{x" cosh (${) =B cosh (x/)] = 0. (23)

The corresponding bending moments. shearing forces in the beum and contact pressure
distribution are

M(x) = W{_——_PEW} {1 stnh (xx}—f sinh (fx)

l 5 . . Bl
+ 5 {{«* cosh (x/) cosh (1) —aff sinh (2/) sinh () — °} cosh (xx)

+[ B cosh (2f) cosh (B1) — 2f sinh (2f) sinh ()~ o°] cosh (/fx)}} (24

-P s )
V{x) = 2t~ ) {x’ cosh (ax)—fi* cosh (fv)
l h Al .
+ ¢ {afa’ cosh (2l cosh (B1) —xff sinh (2/) sinh (/i) - 7] sinh (xv)

+ BB cosh (xf) cosh (fil) —«ff sinh (2f) sinh (i) — 27| sinh (/3’\")}} (25)

plx) = x [(pt/2)° — 1] sinh (ax)— B{{1/$)* = 1] sinh (fx)

2EKx - [1)
l B * A}
+ 3 {[Cae/2)° = ][ cosh (af) cosh (fil) —2f8 sinh (2/) sinh (i) — 87] cosh (xx)

+[( 1/ = 1)[B° cosh (xf) cosh (fi)—aff sinh (xf) sinh (f{) —2"] cosh ([Ix)}}. (26)

-« . - . / -~

This completes the solution to the problem under consideration. The case G = 2 /A ES

is not of interest for this study. Next, the solution obtained is compared with experimental
results.

COMPARATIVE STUDY

Available experimental results

The only results located related to the problem under consideration are those of
photoelastic tests conducted by Durelli ¢f af. (1969), which were used by Ting (1973).
Durelli ¢t al. tested beams of different lengths resting on an elastic foundation and subjected
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Fig. 2. Test set-up by Durclli et al. (1969) (1 in = 2.54 ¢cm).

to various loadings. Their experimental set-up is shown in Fig. 2. It consisted of a beam
made of a hard transparent plastic (CR-39) resting on a slab of soft transparent polyurethane
rubber (HYSOL 4485) of the sume width as the beam. The beam was subjected to a vertical
load, £ = 140 N (31.46 Ib), placed in the center.

The clastic propertics for these materials are

CR-39 £=222x10"Ncm *(3.22x 10" psi)
v=042

HYSOL-4485 £ = 362.0Ncem (525 psi) (2N
v= (047

where £1s Young's modulus and v is Poisson’s ratio.
The bending moments A(x) were calculated directly from the recorded fringe numbers.
Then, noting that

=Y a2 Y M
X) = dv an P '\)—d.\'— d?

the shearing forces in the beam F(x) and contuct pressure distribution p(.x) were determined
by successive numerical differentiation of M(x) with respect to x.

Durellt ¢t af. presented the bending moment, beam shear and contact pressure dis-
tributions in the non-dimensional normalized form

M*(x) = 4iM(x)/ P
P*(x)y=21(x)'P (28)
Py = 2p(x)/Pi

where 4 = \‘,/k/4EI. They determined the & value needed by using the expression derived
by Biot (1937). who matched the results for an infinite beam attached to a two-dimensional
clastic continuum. According to their calculations, & = 27.58 N ¢m~* (40 Ib in~°) and
4 =0.1083cm ' (0.275in" ).

This non-dimensionalization was found necessary by Durelli et al. since they compared
the photoclastic results to a Winkler model. Because 4 is a parameter that appears in the

SAS 28:4-8
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Fig. 5. Comparison of contact pressures.

Winkler foundation analysis and not in the one which utilizes a Pasternak base. as con-
stdered in the present paper, the non-dimensionalized graphs were converted back to their
original form. The results are shown in Figs 3, 4 and §, as dashed lines.

In a subsequent discussion Pandit (1970) pointed out that the contact pressure dis-
tribution, as determined by Durelli er al. (shown in Fig. 5). contains the inaccuracics
inherent in the process of double differentiation of experimental results, and that this is
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most likely to be the cause of the sharp increase of the contact pressure distribution under
the load. This possibility was acknowledged and accepted by Durelli ez a/. (1970).

When considering the contact pressure distribution in Fig. 5 it should be noted that
vertical equilibrium must be satisfied. Thus,

!
= j p(x)dx (29)
§]

19|

must hold true. Whereas in the test P2 =70 N (31.46 Ib). the intcgration of the area
enclosed by the experimental contact pressure results in 92 N ; this is 31 % larger than P 2.

Another problem with the experimental pressure distribution is that the point of
separation (beyond which the contact pressures are zero) corresponds to the end of the
beam, 15.24 cm (6”). This contradicts their statement that when subjected to P = 140 N,
the beam separated from the foundation at both ends. Furthermore, according to the test
moment diagram shown in Fig. 3. the point of lift-off appears to be at x = 11.2 cm (4.57)
from the center of the beam. Therefore. the contact pressure distribution calculated from
the bending moments recorded appears to be inaccurate near the load and should not exist
past x = 1.2 cm.

Comparison of analvtical and photoclastic results

In order to compare the analytic results based on the Pasternak foundation model
presented previously with the photoclastic results, the Pasternak foundation parameters
must be determined first. The methods for determining the foundation paramcters were
recently discussed by Kerr (1985). The criterion suggested for the determination of these
parameters is that the analytical results agree as closely as possible with the actual situation,
for the range of loads under consideration. Tt was utilized by Kneifati (1985).

Theretore. in the following the two Pasternak parameters are determined by collocating
the test results with the corresponding analytical expressions. The number ol collocation
points to be used is equal to the number of unknown foundation parameters. Therefore,
two data points are needed. For the problem under consideration the separation length /is
obtained from the test.

Because of the small size of the test beam, it is reasonable to assume that the eftect of
the wetght of the beam is negligible on the test response. This justifics the use of the presented
analyses in the following comparative study. Since the foundation parameters are not
known « priori, the analytical results for both cases G < 7\/I\L‘I and ¢ > "\//\L'I must be
considered.

I'rom the test curves in Figs 3, 4 and 5, the moment distribution is most accurate, since
it was obtained directly from the test data. Therefore, it will be used for cotlocation purposes.
From this curve two data points are chosen. They are:

at x; =0cm M,
11.2em(4.4in) M,

272Nem(24.11b in)} (30
. )

Olbin

at x,
Substitution of these values into the moment expressions given in (15) and (24), noting that
according to Fig. 3 the separation distance /= x, = 11.2 e¢m, results in two non-lincar
cquations for the determination of k£ and G for each of the two cases G § 2\//\51 Using
the IMSL routine NEQNF and a Fortran program for the problem undt.r consideration
the foundation parameters are found to satisfy G > \ﬂ\L'I They are:

k=9.65Ncm *(l4psi). G = 1864.5N (4191b). 3n

[tis of interest to note that this solution program when used on the two non-lincar equations
for G > ..\/I\L'I did not converge. [t is also noteworthy that / = x, = 11.2 ¢cm obtained
from the test curve in Fig. 3 and the above two parameters & and G do satisfy eqn (23):
the analytical condition for the determination of /.
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The bending moments, shear forces and contact pressure distribution are then numeri-
cally determined using eqns (24)-(26). They are plotted as solid lines in Figs 3. 4 and 3.

According to Fig. 3 the photoelastic results and the analytical results agree very closcly.
throughout. for the beam bending moments. although only the two extreme points (x = 0
and x = /) were matched for the determination of & and G. The disagreement of the '(x)
curves and the p(x) curves seem to be caused mainly by the inaccuracies introduced by the
numerical differentiations of the M-test curves, as discussed previously. However. it should
be noted that the slope discontinuity at the concentrated load P of the analytically-obtained
pix) curve (Fig. 3) is another busic shortcoming? of the Pusternak model and is caused by
the term Gw” in eqn (2). It is reasonable to expect that in an actual situation the contact
pressure distribution px) will have a horizontal tangent at P: the point of symmetry.

[t may be shown that the vertical equilibrium equation

&~

P = 140N = ZJ pixydy (32)
]
15 satisfied for the analytical p(x) expression. as anticipated.

CONCLUSIONS

Utilizing the variational approach for variable matching points derived by Kerr (1976),
a formulation for the problem under consideration was presented that is mechanically
reasonable and mathematically well posed. The analyvticad solution obtained was evaluited
numericilly and then compured with related photoclastic test results by Durellt er af. (1969),

It s noteworthy that although the two Pasternak foundation parameters were deter-
mined by collocating two extreme points on the test curve for bending moments, the
agreement is very close throughout this curve, The agreement is only satisfuctory for the
beam-shearing foree distribution F'(x) and the contact-pressure distribution p (except near
the load ). 1t is pointed out that this disagreement seems to be caused mainly by the
inaccuracies associated with the numerical ditferentiation of the M-test curve,

The discussion of the incorrect analyses by Chernigovskaya (1961) and Ting (1973),
and the presented solution of the correct formulation show that caution has to be exercised
when formulating problems of structures which rest on a Pasternak-type foundation,
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